A generalized data-driven energy prediction model with uncertainty for a milling machine tool using Gaussian Process

نویسندگان

  • Jinkyoo Park
  • Sudarsan Rachuri
چکیده

Using a machine learning approach, this study investigates the effects of machining parameters on the energy consumption of a milling machine tool, which would allow selection of optimal operational strategies to machine a part with minimum energy. Data-driven prediction models, built upon a nonlinear regression approach, can be used to gain an understanding of the effects of machining parameters on energy consumption. In this study, we use the Gaussian Process to construct the energy prediction model for a computer numerical control (CNC) milling machine tool. Energy prediction models for different machining operations are constructed based on collected data. With the collected data sets, optimum input features for model selection are identified. We demonstrate how the energy prediction models can be used to compare the energy consumption for the different operations and to estimate the total energy usage for machining a generic part. We also present an uncertainty analysis to develop confidence bounds for the prediction model and to provide insight into the vast parameter space and training required to improve the accuracy of the model. Generic parts are machined to test and validate the prediction model constructed using the Gaussian Process and we consistently achieve an accuracy of over 95% on the total predicted energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a generalized energy prediction model for machine tools.

Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predi...

متن کامل

Energy Efficiency Analyses of Toolpaths in a Pocket Milling Process

This paper presents an approach to analytically determine the most energy efficient toolpath strategy in mechanical machining. This was achieved by evaluating the electrical energy requirement of the NC codes generated for the zag, zigzag, and rectangular contour toolpath strategies. The analytical method was validated by performing pocket milling on AISI 1018 steel with the considered toolpath...

متن کامل

Cutting Force Prediction in End Milling Process of AISI 304 Steel Using Solid Carbide Tools

 In the present study, an attempt has been made to experimentally investigate the effects of cutting parameters on cutting force in end milling of AISI 304 steel with solid carbide tools. Experiments were conducted based on four factors and five level central composite rotatable design. Mathematical model has been developed to predict the cutting forces in terms of cutting parameters such as he...

متن کامل

Prediction of Tool Wear and Tool Life with Condition Monitoring System on End Milling of EN31

This paper describes the tool life prediction model with end milling EN31 tool steel using P30 Tungsten uncoated carbide tool. The data set from the Taguchi method design is taken. For discussion the effects of cutting speed, feed rate and depth of cut on tool life of P30 are considered. This paper suggests a novel technique for the tool wear measurement based on machine vision. Tool images are...

متن کامل

Ensemble Neural Network Model for Predicting the Energy Consumption of a Milling Machine

Accurate prediction of the energy consumption is critical for energy-efficient production systems. However, the majority of existing prediction models aim at providing only point predictions and can be affected by uncertainties in the model parameters and input data. In this paper, a prediction model that generates prediction intervals (PIs) for estimating energy consumption of a milling machin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015